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SUMMARY 

A method for generating irregular triangular computational grids in two-dimensional multiply connected 
domains is described. A set of points around each body is defined using a simple grid generation technique 
appropriate to the geometry of each body. The Voronoi regions associated with the resulting global point 
distribution are constructed from which the Delaunay triangulation of the set of points is thus obtained. The 
definition of Voronoi regions ensures that the triangulation produces triangles of reasonable aspect ratios 
given a grid point distribution. The approach readily accommodates local clustering of grid points to facilitate 
variable resolution of the domain. The technique is generally applicable and has been used with success in 
computing triangular grids in multiply connected planar domains. The suitability of such grids for flow 
calculations is demonstrated using a finite element method for solution of the inviscid transonic flow over two- 
dimensional high-lift aerofoil configurations. 
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INTRODUCTION 

Many problems in computational physics involve the numerical solution of a set of equations in a 
complicated shaped domain. The solution of such problems requires the domain to be discretized 
to produce a set of points on which the numerical algorithm can be based. For some problems, the 
generation of a suitable grid can be as demanding as the effort required to perform the 
computations for which the grid was intended. In recent times, considerable attention has been 
focused on the discretization process, which is commonly called grid generation. Many grid 
generation algorithms of varying degrees of automation and sophistication have appeared in the 
literature.'*2 However, the complexity of many of these algorithms results in a continued search for 
more simple and, in some cases, more elegant grid generation techniques. 

For the ease and accuracy of implementing boundary conditions, body conforming grids have 
received widespread use. Thacker3 reviews some of the many different techniques which have been 
developed. For simple shapes, it is possible to generate rectilinear meshes without too much 
difficulty. For complicated shapes, however, it becomes increasingly difficult to produce a 
structured mesh that is aligned with all solid boundaries. Multiblock methods, in which the 
computational domain is subdivided into a set of blocks whereupon the arrangement of the blocks 
defines the grid topology which is consistent with the boundary shape, have been proposed for 
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dealing with such regions4 For very complex shapes, for example, a transport aircraft with closely 
coupled nacelles, it is questionable whether it is possible to automatically generate a structured 
grid and maintain low cell skewness, a smooth point distribution and adequate grid resolution of 
important regions. 

An alternative grid generation procedure is to use tetrahedral or triangular cells leading to an 
unstructured grid which can be adapted to irregular boundaries. A smooth distribution of triangle 
size can be achieved without distortion of the elements. The unstructured triangle approach readily 
accommodates local clustering of grid points to facilitate variable resolution of a domain. 

Finite element methods have been traditionally based on triangular cells in two dimensions and 
tetrahedral cells in three dimensions. It follows, therefore, that numerous algorithms have been 
developed to generate triangular grids within a given domain. Lo5 categorizes and references some 
of these methods. 

In this paper, a new method will be described for generating triangular grids which connects an 
arbitrary cluster of points by a systematic procedure based on the Delaunay criterion. This is dual 
to the Voronoi diagram (or Dirichlet tessellation) that results from a division of the domain into 
polygonal neighbourhoods, each consisting of the subdomain of points nearer to a given grid point 
than any other grid point. Although the Delaunay triangulation and associated Voronoi diagram 
have been exploited by others as a natural setting for calculations involving irregular spaced 
 point^,^,^ we believe that the use of the Delaunay criterion as an explicit method of generating 
grids for complex shapes is a new departure. We will show how these ideas can be applied to 
multiply connected domains in two dimensions with an emphasis on aeronautical geometries. The 
suitability of the triangular grids for flow calculations will be demonstrated by computing the 
inviscid transonic flow over a two-dimensional high-lift aerofoil configuration using a new finite 
element algorithm for the Euler equations developed by Jameson.' Although the discussions will 
be restricted to two dimensions, the ideas extend to three dimensions and have been applied with 
success to compute the inviscid transonic flow over a complete aircraft.' 

VORONOI NEIGHBOURHOODS AND DELAUNAY TRIANGULATION 

Dirichlet" in 1850 proposed a method whereby a given domain could be systematically 
decomposed into a set of packed convex polygons. Given a set of points in the plane, the Dirichlet 
tessellation is the construct which assigns to each point a territory that is the area of the plane 
closer to that point than to any other point in the set. This tessellation of a closed domain 
results in a set of non-overlapping convex polygons, called Voronoi regions, covering the entire 
domain. This definition readily extends to higher dimensions. 

This basic idea, although first described by Dirichlet, has been subsequently rediscovered by 
various workers in many fields and the Dirichlet regions are described under a variety of names: 
Theissen regions (meteorology), Wigner-Seitz cells (solid state physics) and Voronoi diagrams 
(computational geometry). An extensive discussion on the application of Voronoi diagrams is 
given in Green and Sibson." 

If a set of points is denoted by {pi>, then the Voronoi region {Vi} can be defined as 

{ vi> = { P :  I /  P - Pi II < I/ P - P j  I /  > v j z i>; 

i.e., the Voronoi region { Vi> is the set of all points of p that are closer to pi than to any other 
point. The sum of all points p forms a Voronoi polygon. 

From this definition, it is clear that, in two dimensions, the territorial boundary which forms 
a side of a Voronoi polygon must be midway between the two points which it separates and is 
thus a segment of the perpendicular bisector of the line joining these two points. If all point 
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Figure 1. Dirichlet regions and associated Delaunay triangles of the set of points i, i = 1-9 

pairs which have some segment of boundary in common are joined by straight lines, the result 
is a triangulation of the convex hull of the data points. This triangulation is known as the 
Delaunay triangulation of the set of points {pi} and forms the basis of our grid generation 
procedure. It is apparent that for each triangle there is an associated vertex of the Voronoi 
diagram which is at the circumcentre of the three points which form the triangle. In other words, 
each Delaunay triangle has a unique vertex of the Voronoi diagram and no other vertex within 
the Voronoi structure lies within the circle centred at this vertex. Figure 1 shows a schematic 
of a Voronoi diagram and associated Delaunay triangulation of a small set of points. In three 
dimensions, the territory of each data point is a convex polyhedron and each vertex of the 
Voronoi structure is at  the circumcentre of a sphere defined by four points which describe the 
Delaunay tetrahedron. 

A survey of computational methods to construct the Voronoi diagram and Delaunay 
triangulation is given in the paper by Green and Sibsonil Recent noteworthy papers which 
describe efficient algorithms are those of Watson," Boywer13 and F ~ r t u n e . ' ~  The algorithm used 
here is based on the work of Boywer.13 

DELAUNAY TRIANGULATION ALGORITHM 

It is possible to completely describe the structure of the Voronoi diagram and Delaunay 
triangulation by constructing two lists for each Voronoi vertex; a list of forming points of a Voronoi 
vertex (the forming points define a Delaunay triangle) and a list of the neighbouring Voronoi 
vertices. In n dimensions, each vertex has n + 1 forming points and n + 1 neighbouring vertices. As 
an example, Table I contains the vertex structure for the points shown in Figure 1. 

The Delaunay algorithm is a sequential process; each new point is introduced into the existing 
structure, which is broken and then reconnected to form a new Delaunay triangulation. 

The details of the algorithm will be presented in a step-by-step manner for a triangulation in two 
dimensions. 

Step 1 

Define the convex hull within which all points will lie. Specify four points together with the 
associated Voronoi diagram structure. Figure 2 indicates a typical start-up layout and Table I1 the 
corresponding data structure. 
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Table I 

Vertex Forming points Neighbouring vertices 

1 1 2 3  2 4 4  
2 2 3 4  1 3 4  
3 3 4 9  2 4 4  
4 4 7 9  3 5 6  
5 7 8 9  4 7 6 ,  
6 4 7 6  4 8 4  
7 5 7 8  5 8 4  
8 5 6 7  6 7 6 ,  

Table 11. Data structure for the triangulation shown in Figure 2 

Vertex Voronoi diagram Forming points Neighbouring vertices 

1 -10 1 3 -10 -10 5 
2 -10 3 4 -10 -10 6 
3 -10 2 4 -10 -10 6 
4 -10 1 2 -10 -10 5 
5 1 2 3  1 4 6  
6 4 2 3  5 2 3  

1 
I 
I 
I 
I 
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Figure 2. Initial points which define convex hull with associated vertices 
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Vertices 1,2,3,4 are not strictly defined, since they lie outside the convex hull and therefore do 
not possess three forming points and do not have three neighbouring vertices. Default values of -10 
for the missing forming points and neighbouring vertices have been used to indicate that these are 
null vertices. 

Step  2 

Introduce the new point anywhere within the convex hull { 1,2,3,4). 

Step  3 

Determine all vertices of the Voronoi diagram to be deleted. A point which lies within the 
circle, centred at a vertex of the Voronoi diagram and which passes through its three forming 
points, results in the deletion of that vertex. This follows from the definition of a Voronoi polygon. 

Step  4 

new point. 
Find the forming points of all the deleted Voronoi vertices. These are the contiguous points to the 

S t e p  5 

Determine the neighbouring Voronoi vertices to the deleted vertices which have not themselves 
been deleted. These data provide the necessary information to enable valid combinations of 
contiguous points to be constructed. 

S t e p  6 

Determine the forming points of the new Voronoi vertices. The forming points of new vertices 
must include the new point together with two other points which are contiguous to the new point 
and form an edge of a neighbouring triangle (these are the possible combinations obtained from 
Step 5). 

S t e p  7 

Determine the neighbouring Voronoi vertices to the new Voronoi vertices. Following Step 6, the 
forming points of all new vertices have been computed. For each new vertex, perform a search 
through the forming points of the neighbouring vertices as found in Step 5 to identify common 
pairs of forming points. When a common combination occurs, then the two associated vertices are 
neighbours of the Voronoi diagram. 

S t e p  8 

Reorder the Voronoi diagram data structure, overwriting the entries of the deleted vertices. 

S t e p  9 

Repeat steps 2-8 for the next new point. 
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With the exception of Step 3, all the operations described are of a local nature and can be carried 
out in an operation count independent of the total number of points within the current structure. A 
naive search for vertices of the Voronoi diagram to be deleted would amount to O ( N )  operations 
per point and thus to O ( N 2 )  operations for the total workload. An obvious improvement is to 
identify any one vertex that is to be deleted and then perform a tree search through the 
neighbouring Voronoi diagram data structure checking for other vertices to be deleted; i.e., (a) find 
a vertex to be deleted (b) test each of that vertex’s neighbouring vertices for deletion; (c) when all 
neighbouring vertices of deleted vertices have been checked, then all vertices to be deleted must 
have been identified. The effectiveness of this approach depends on the efficiency with which the 
first vertex to be deleted can be found. If the list of points is ordered in a systematic manner, then a 
reasonable starting vertex is the last vertex in the structure. This procedure can lead to a negligible 
workload for Step 3. 

It is apparent that two floating point calculations are required in this method; the co-ordinates of 
the circumcentre (vertex) and the squared radius associated with the circle that passes through the 
three forming points of that vertex. The remaining operations are of a purely logical nature 
involving the manipulation of integer variables. 

The specification of four initial points which define the convex hull within which all points lie is 
not, in practice, a restriction. These points can be chosen to ensure a sufficiently large hull so that 
no restrictions on the grid generators will occur. 

It is apparent from the definition of a Voronoi polygon that problems can arise in the 
triangulation procedure when certain degeneracies occur in the data. Common degeneracies in two 
dimensions arise when 

(1) two points are coincident, 
(2) three points of a potential triangle lie on a straight line, 
(3) four or more points are cyclic. 

The first degeneracy is easily avoided by requiring that each new point be some small distance 
from its nearest neighbours before it is admitted into Step 2. The second degeneracy implies that 
the circumcentre of the three forming points is at infinity. This is readily detected and in such a case 
the new point which has caused such a degeneracy can be rejected or moved a small distance and 
treated as a new point. 

The third degeneracy is of a more subtle nature than the preceding two. In this case, two vertices 
are coincident and give rise to a point at which more than three Voronoi polygons meet. In such a 
situation, the resulting triangulation is not unique, but this in itself is not a problem. The 
triangulation procedure is still valid for such cases. However, this degeneracy may manifest itself 
at a later stage of the triangulation when a point is introduced which results in the deletion of 
one of the vertices of the Voronoi diagram but not the other. An inconsistency thereby arises 
in the vertex structure which can result in the breakdown of the non-overlapping triangulation 
procedure. This problem occurs because of round-off error within the computer. It proves 
advantageous to check for cyclic points so that this subtle degeneracy cannot arise. If such points 
do occur, then one point can be rejected or moved a small distance. Apart from points which 
define the aerodynamic geometry, the actual position of the grid points is not critical and it has 
been found that degeneracies can be avoided by moving points a very small distance from their 
original position. 

Computationally, the usual compromises between storage space and execution time have been 
observed. In addition to the forming points and neighbouring vertices of each vertex of the 
Voronoi diagram, the co-ordinates of each vertex and each point are stored together with the 
squared distance of the vertex from its forming points. Figure 3 shows how CPU time varies 
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Figure 3. Variation of CPU time with number of points for the two-dimensional Delaunay triangulation 

with the number of points for the two-dimensional Delaunay triangulation algorithm. 

APPLICATION TO MULTIPLY CONNECTED DOMAINS 

The Delaunay triangulation provides a systematic way of constructing a triangular covering of a 
given set of points. The technique does not generate the position of grid points. The major 
applications of the Voronoi diagram, as reported in the literature, have been to the fields of social 
statistics and meteorology, where the data points have been obtained from an experiment or 
observation. Our application of this technique to grid generation is somewhat different. Here we 
wish to discretize a finite domain and ensure that the resulting triangular structure is body 
conforming, a sufficient number of cells are obtained in regions where a high resolution of the 
domain is required and the aspect ratio of cells is not too large. 

To illustrate the application of the Delaunay triangulation concept to grid generation, we will 
consider the generation of a grid around an ellipse within an elliptical domain. 

First, the outer boundary points followed by the points which define the elliptical section are 
introduced into the Delaunay algorithm. The resulting triangulation of these points gives rise to 
edges of triangles which define the ellipse and outer boundary. Figure 4 shows a typical case. Now 
suppose that other grid points from an elliptic distribution are added to this structure. It may arise 
that a point which lies close to the inner ellipse would involve a restructuring of the triangles, 
resulting in the edges of the triangles no longer forming a body conforming structure. Clearly this 
cannot be allowed to occur. To prevent this situation, a check is made following the introduction of 
the outer and inner boundary co-ordinates to find all vertices of the Voronoi diagram with all three 
forming points from the set of points which define the inner elliptical section. Such vertices are 
protected throughout the remaining triangulation. Any additional point which would result in the 
deletion of such a vertex of the Voronoi diagram and hence break the body conforming triangular 
structure is rejected. This criterion, which defines protected triangles, is applicable to convex 
shapes. For concave segments, however, a triangle could be formed which contains all body nodes 
but lies outside the body. It is necessary, therefore, to check for such an occurrence by computing 
the scalar product of the boundary normals at each of the nodes which define the triangle with the 
vectors formed between the nodes of the triangle and the circumcentre of the triangle (i.e., the 
unique vertex of the Voronoi region associated with the triangle). If any of the scalar products are 
positive, then the triangle lies exterior to the body and is not protected. 

At the end of the triangulation process, when all grid points have been introduced, a clean-up 
procedure is required. The vertices of the Voronoi diagram which have been protected are deleted, 
thus removing triangles interior to the elliptical section. In addition, it is necessary to delete vertices 
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Figure 4. Triangulation of convex hull, outer boundary and inner boundary points 

which have, as a forming point, any of the points which define the convex hull. The convex hull was 
defined for convenience and should not in any way define the outer boundary for computations. 
Figure 5 shows the Delaunay triangulation of a set of points which includes the convex hull, outer 
boundary, inner ellipse and interior grid points and Figure 6 this structure after the clean-up 
procedure. Figure 7 shows the Voronoi diagram superimposed onto the Delaunay triangulation. 

The procedure outlines forms the basis for our grid generation technique. If the input points 
define a rectilinear grid, as was the case in the previous example, a more direct triangulation 
method could be employed, making the Delaunay approach excessively complicated. However, 
the generality of the Delaunay approach to grid generation can be readily extended by utilizing the 
concept of the protected vertices within the Voronoi diagram. Suppose a point which lies within the 
inner ellipse was added to the set of points shown in Figure 6. Clearly such a point would not be 
required, since the resulting triangulation about the point would lead to triangles interior to the 
geometry and ideally the point should be rejected by the algorithm. However, if such a point were 
introduced, it would result in an attempt to delete one or more of the protected vertices of the 
Voronoi diagram. But any such point is to be automatically rejected on the grounds that it may 
affect the body conforming structure of the triangles. This, therefore, is a method of detecting points 
which fall within the body section. 

Strictly, using this criterion to reject points, a point is not accepted if it lies within the circle 
centred at a vertex whose forming points all lie on the inner section. This could also include points 
which lie outside the inner ellipse. However, if such a point was accepted, it would, in general, result 
in a number of highly skewed triangles close to the surface of the ellipse which would not be 
advantageous for the solution of the equation on the grid and hence it would seem reasonable to 
also reject such points. 
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Figure 5. Triangulation of all data points 

Figure 6. Triangulation after deletion of unwanted triangles 
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Figure 7. Delaunay triangulation and the associated Voronoi regions 
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There are situations, however, when it is desirable to generate points very close to the interior 
body sections. For example, a grid for a Navier-Stokes flow calculation would require points very 
close to the body. In such circumstances, a geometrical area check can be performed to determine 
whether a point is interior to a given body section. If a point attempts to delete a protected triangle, 
then the area of the protected triangle is compared with the sum of the areas of the three triangles 
formed by joining the point to each of the nodes of the protected triangle. If the summed area is 
greater than the area of the protected triangle, the point lies outside the triangle and is not rejected. 

The method outlined to identify points interior to a given shape increases the applicability of our 
Delaunay approach to grid generation. The grid point generator does not have to produce a body 
conforming set of points which lie outside a given boundary. Any suitable set of points can be 
triangulated, with points interior to the inner boundary detected and rejected. In addition, the 
algorithm can be applied to more than one interior body. Following the approach already 
described, each set of points which defines an interior boundary is introduced, triangulated and the 
protected vertices for each closed boundary are noted. Any grid point which attempts to delete any 
protected vertex of the Voronoi diagram is rejected. As an example of these techniques, Figure 8 
shows the resulting triangulation when a Cartesian grid is used to discretize the region around two 
aerodynamic vehicles. 

Often the generation of a grid suitable for a particular body shape is fairly straightforward; a 
polar grid around a circle, an elliptical grid around an ellipse. It is possible to use these techniques 
to form the basis of a grid point generator for the Delaunay triangulation which results in high- 
quality triangular grids. For example, using a sequence of transformations, a grid around an 
aerofoil can be generated. Such a grid is shown in Figure 9 and the corresponding Delaunay 
triangulation is detailed in Figure 10. The grid shown in Figure 9 provides an excellent basic grid 
generator for multi-element aerofoil configurations. Using this ‘0’ mesh generator, a grid is 
generated around one of the bodies in the configuration, the grid points covering the entire domain. 
For the other bodies, the analytic generator is used to produce points local to each section. The grid 

Figure 8. Unstructured triangular mesh for two automobiles 
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Figure 9. Regular quadrilateral mesh 

Figure 10. Regular triangulation of the grid points shown in Figure 9 
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Figure 11. Triangular grid for a two-element high-lift configuration 
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points from one body which fall inside another body are rejected using the techniques already 
discussed. The resulting grid has an '0'-like structure local to each body, but in regions where 
the grids overlap the global grid is unstructured. 

To decrease grid skewness in the overlapping regions, the triangulated grid can be smoothed 
using a Laplacian filter. Using the data structure of the completed Voronoi diagram, it is possible 
to determine the points which define the polygon which encloses each point. Each interior grid 
point is then smoothed N times according to 

o m  

rn i z l  
x;+f'=x;+- c ( X l - x ; ) ,  

where X;+ is the new position of the point X,, rn is the number of neighbouring points and o is the 
relaxation parameter. The grid is thereby smooth, with desirable spacing local to each body. This 
approach is applicable to an unlimited number of bodies and provides an ideal grid for numerical 
calculations. 

As an illustration of these techniqdes, a variety of examples are presented of triangular grids 
about complex two-dimensional configurations. Figure 11 shows a grid around an aerofoil with 
leading edge slat. The smoothing operator has removed any trace of grid structure within the slat 
region and regular-shaped triangles have resulted. Figure 12 shows an unstructured triangular 
grid around a four-element aerofoil configuration and Figure 13 the corresponding Voronoi 
diagram. 

The Delaunay triangulation approach to grid generation is well suited for use with an interactive 
graphics workstation. The grid can be viewed after the introduction of any number of points. If for 
some reason additional points need to be added in a particular region, the user would be free to 
specify appropriate points which could then be incorporated into the grid without the need to 
restart the triangulation procedure. 

Figure 12. Triangular grid for a four-element high-lift configuration 
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Figure 13. Voronoi diagram corresponding to the triangulation shown in Figure 12 

Mesh enrichment is a natural technique to incorporate into this grid generation method. Points 
obtained by interpolation of the base grid are used to provide additional resolution of complex 
geometrical features. However, unlike mesh enrichment on a regular grid, the unstructured grid 
approach does not lead to any artificial interfaces where continuity of grid lines is lost. 

It is evident from the foregoing comments that the Delaunay approach to grid generation could 
provide an effective technique for use with an adaptive mesh/flow algorithm. Some work in this 
area has already been reported.' 

The finite element approximation to the Euler equations, as formulated by Jamesoq8 has been 
used with the Delaunay triangulation algorithm to compute the transonic flow over high-lift 
aerofoil geometries. The finite element formulation is obtained by directly approximating the 
integral equations for the balance of mass, momentum and energy in polygonal control volumes 
which are formed by the union of triangles meeting at a common node. The flux balancing can be 
broken down into contributions of fluxes across edges. This novel decomposition reduces the 
evaluation of the Euler equations to a single main loop over the edges of all triangles. It can be 
shown that the scheme can be reformulated so that it is essentially equivalent to the Galerkin 
method, but the present formulation leads to a substantial reduction of the computational effort. 

Pressure distributions over the four-element high-lift configuration shown in Figure 12 are 
presented in Figure 14. 
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Figure 14. Pressure distribution computed using the Euler equations on the grid shown in Figure 12 
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CONCLUSIONS 

A method of generating Voronoi regions and corresponding Delaunay triangles has been exploited 
to provide a means of connecting a set of points to produce a consistent triangular covering of a 
given domain. The set of points is generated using an approach consistent with the body geometries 
to ensure high grid quality. Examples given for complex two-dimensional geometries illustrate the 
power of this method. The generality of the approach is clearly shown in its ability to cope with a 
four-element aerofoil system. 
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